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Exercice 1 : Double diffusion Compton

Un photon fait deux collisions (une après l’autre) avec deux électrons différents au repos (vitesse
avant collision zéro). Après ces deux collisions, la direction de propagation du photon reste la même
que sa direction de propagation initiale. On sait aussi que l’énergie cinétique du premier électron
après la collision est 1.5 fois plus grande que l’énergie cinétique du deuxième électron après collision.
L’énergie initiale du photon vaut 80 keV. Tous les calculs sont non-rélativistes.

1. Faites un schéma des processus de collision.
2. Calculez la longueur d’onde initiale du photon incident.
3. Calculez les angles θ1 et θ2 de diffusion des photons.
4. Calculez les longueurs d’onde λ′ et λ′′ des photons diffusés.
5. Calculez les énergies cinétiques E1 et E2 des deux électrons après collision.

Exercice 2 : La dispersion du photon et d’une particule avec masse

Nous voulons calculer la dépendance entre la fréquence f et la longueur d’onde de de Broglie λ
pour une particule de masse m.

1. Calculer la relation f(λ) en partant de l’expression pour l’énergie d’une particule relativiste
E2 = p2c2 +m2c4.
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2. Est-il possible pour une particule de masse m > 0 d’avoir la même fréquence et la même
longueur d’onde qu’un photon ? Expliquez votre raisonnement.

Exercice 3 : L’étudiant quantique

Après avoir appris l’hypothèse de de Broglie que les particules de masse m et impulsion p ont
un comportement ondulatoire avec longueur d’onde λ = h/p, un étudiant pesant 80 kg commence
à avoir peur que, s’il passe à travers une porte de largeur de 75 cm, il sera diffracté à jamais !
Supposez que la diffraction devient non-négligeable lorsque l’ouverture est moins que 10 fois plus
grande que la longueur d’onde.

1. Déterminer la vitesse maximale que doit avoir l’étudiant pour être diffracté de façon signifi-
cative.

2. Avec cette vitesse, calculer combien de temps mettra l’étudiant à traverser l’ouverture de la
porte, sachant que l’épaisseur du mur est de 15 cm. Comparer cette durée de temps à l’âge
de l’Univers, qui est environ 4× 1017 s.

3. Expliquer si c’est raisonnable que cet étudiant s’inquiète d’être diffracté.

Exercice 4 : Condensat de Bose-Einstein

La loi du gaz parfait relie la pression P , le volume V , et la température T d’un gaz parfait

PV = NkBT ,

où N est le nombre d’atomes et kB la constante de Boltzmann. Le principe d’équipartition de
l’énergie affirme que l’énergie cinétique moyenne de chaque atome dans le gaz est

〈E〉 = 3

2
kBT .

Nous avons vu que chaque atome, vu comme une particule en mouvement, est caractérisé par
une onde de de Broglie, avec une longueur d’onde qui dépend de la vitesse. On s’attend à que le
comportement ondulatoire des atomes ait des conséquences à l’échelle macroscopique de tout de
gaz, si la distance moyenne entre les atomes est comparable à leur longueur d’onde de de Broglie
moyenne, car dans ces conditions les ondes associées aux différents atomes commencent à faire de
l’interférence.

1. Calculer l’expression pour la longueur d’onde thermique de de Broglie λth. Cette quantité
est définie comme la longueur d’onde de de Broglie qui correspond à l’énergie moyenne des
atomes du gaz à température T .

2. Etant donné la densité n = N/V du gaz, calculer la température Tc à laquelle en moyenne on
trouve un atome dans un volume λ3th. Cette température est la température critique pour la
transition de phase qui conduit à la condensation de Bose-Einstein, étudiée pour la première
fois par Einstein en 1925. A cette température on s’attend à que la nature ondulatoire des
particules du gaz se manifeste au niveau macroscopique.
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3. Considérer l’air à la pression ambiante P ' 105N/m2. Quelle est la température critique Tc,
si on suppose que l’air est un gaz parfait et il est composé exclusivement de molécules d’azote
N2 ?

4. En 1995, la condensation de Bose-Einstein a été observée pour la première fois par deux
groupes, dirigés par Eric Cornell et Carl Wieman, et par Wolfgang Ketterle. Les trois ont
gagné le prix Nobel en 2001 pour cette découverte. Les gaz utilisé était du Rubidium 87Rb.
La densité du gaz était de 2.5 × 1012 atomes par cm3. Calculer la température critique Tc à
laquelle la condensation a eu lieu.

Exercice 5 : Expérience de Young avec fullerènes

On aimerait faire une expérience de Young à deux fentes, avec des molécules de carbone. Nous
allons considérer une forme idéalisée pour ces molécule, où les atomes de carbone sont arrangé
uniformément sur une sphère, comme par exemple pour le cas de la molécule de fullerène C60. Soit
r le rayon de la sphère et n le nombre d’atomes qui forme la molécule. On suppose que chaque
atome occupe une surface de 1 nm2 sur la sphère. On envoie un faisceau de ces molécules sur deux
fentes qui font une taille d et une distance comparable à la taille. Les molécules ont une vitesse de
1 m/s. On admet que, pour observer des franges d’interférence il faut que d soit au maximum 10
fois plus grand que la longueur d’onde de de Broglie des molécules.

1. Calculer le rayon r de la molécule en fonction du nombre n d’atomes.
2. Si on suppose que les plus petites fentes qu’on arrive à fabriquer ont d = 5 nm, calculer quel

est le plus grand n pour lequel on arrive encore à mener l’expérience. Quelle est la condition
qui détermine ce maximum?

Exercice 6 : Question de type examen

Un vaisseau spatial de masse m = 1 kg utilise comme propulsion une voile photonique. Un laser
depuis la terre est envoyé sur la voile et pousse ainsi le vaisseau spatial. Supposons que le vaisseau
n’est pas soumis à d’autres forces, et que la voile réfléchit parfaitement la lumière. Si la vitesse
initiale est zéro, quelle sera la vitesse v atteinte par le vaisseau, si un seul photon de longueur
d’onde λ arrive dans une direction orthogonale à la voile et est réfléchi dans la direction opposée ?

1. v =
h

λ
.

2. Un peu plus de v =
h

mλ
.

3. Un photon a masse zéro donc ne peut pas pousser un objet massif.

4. Un peu moins de v =
2h

mλ
.

5. v =
2h

mλ
.
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